3.377 \(\int \frac{\log (c (d+e x^n)^p)}{x (f+g x^{-2 n})^2} \, dx\)

Optimal. Leaf size=377 \[ \frac{p \text{PolyLog}\left (2,\frac{\sqrt{-f} \left (d+e x^n\right )}{d \sqrt{-f}-e \sqrt{g}}\right )}{2 f^2 n}+\frac{p \text{PolyLog}\left (2,\frac{\sqrt{-f} \left (d+e x^n\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{2 f^2 n}+\frac{g \log \left (c \left (d+e x^n\right )^p\right )}{2 f^2 n \left (f x^{2 n}+g\right )}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac{e \left (\sqrt{g}-\sqrt{-f} x^n\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{2 f^2 n}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (-\frac{e \left (\sqrt{-f} x^n+\sqrt{g}\right )}{d \sqrt{-f}-e \sqrt{g}}\right )}{2 f^2 n}-\frac{e^2 g p \log \left (d+e x^n\right )}{2 f^2 n \left (d^2 f+e^2 g\right )}+\frac{e^2 g p \log \left (f x^{2 n}+g\right )}{4 f^2 n \left (d^2 f+e^2 g\right )}-\frac{d e \sqrt{g} p \tan ^{-1}\left (\frac{\sqrt{f} x^n}{\sqrt{g}}\right )}{2 f^{3/2} n \left (d^2 f+e^2 g\right )} \]

[Out]

-(d*e*Sqrt[g]*p*ArcTan[(Sqrt[f]*x^n)/Sqrt[g]])/(2*f^(3/2)*(d^2*f + e^2*g)*n) - (e^2*g*p*Log[d + e*x^n])/(2*f^2
*(d^2*f + e^2*g)*n) + (g*Log[c*(d + e*x^n)^p])/(2*f^2*n*(g + f*x^(2*n))) + (Log[c*(d + e*x^n)^p]*Log[(e*(Sqrt[
g] - Sqrt[-f]*x^n))/(d*Sqrt[-f] + e*Sqrt[g])])/(2*f^2*n) + (Log[c*(d + e*x^n)^p]*Log[-((e*(Sqrt[g] + Sqrt[-f]*
x^n))/(d*Sqrt[-f] - e*Sqrt[g]))])/(2*f^2*n) + (e^2*g*p*Log[g + f*x^(2*n)])/(4*f^2*(d^2*f + e^2*g)*n) + (p*Poly
Log[2, (Sqrt[-f]*(d + e*x^n))/(d*Sqrt[-f] - e*Sqrt[g])])/(2*f^2*n) + (p*PolyLog[2, (Sqrt[-f]*(d + e*x^n))/(d*S
qrt[-f] + e*Sqrt[g])])/(2*f^2*n)

________________________________________________________________________________________

Rubi [A]  time = 0.608658, antiderivative size = 377, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 14, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.518, Rules used = {2475, 263, 266, 43, 2416, 2413, 706, 31, 635, 205, 260, 2394, 2393, 2391} \[ \frac{p \text{PolyLog}\left (2,\frac{\sqrt{-f} \left (d+e x^n\right )}{d \sqrt{-f}-e \sqrt{g}}\right )}{2 f^2 n}+\frac{p \text{PolyLog}\left (2,\frac{\sqrt{-f} \left (d+e x^n\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{2 f^2 n}+\frac{g \log \left (c \left (d+e x^n\right )^p\right )}{2 f^2 n \left (f x^{2 n}+g\right )}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac{e \left (\sqrt{g}-\sqrt{-f} x^n\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{2 f^2 n}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (-\frac{e \left (\sqrt{-f} x^n+\sqrt{g}\right )}{d \sqrt{-f}-e \sqrt{g}}\right )}{2 f^2 n}-\frac{e^2 g p \log \left (d+e x^n\right )}{2 f^2 n \left (d^2 f+e^2 g\right )}+\frac{e^2 g p \log \left (f x^{2 n}+g\right )}{4 f^2 n \left (d^2 f+e^2 g\right )}-\frac{d e \sqrt{g} p \tan ^{-1}\left (\frac{\sqrt{f} x^n}{\sqrt{g}}\right )}{2 f^{3/2} n \left (d^2 f+e^2 g\right )} \]

Antiderivative was successfully verified.

[In]

Int[Log[c*(d + e*x^n)^p]/(x*(f + g/x^(2*n))^2),x]

[Out]

-(d*e*Sqrt[g]*p*ArcTan[(Sqrt[f]*x^n)/Sqrt[g]])/(2*f^(3/2)*(d^2*f + e^2*g)*n) - (e^2*g*p*Log[d + e*x^n])/(2*f^2
*(d^2*f + e^2*g)*n) + (g*Log[c*(d + e*x^n)^p])/(2*f^2*n*(g + f*x^(2*n))) + (Log[c*(d + e*x^n)^p]*Log[(e*(Sqrt[
g] - Sqrt[-f]*x^n))/(d*Sqrt[-f] + e*Sqrt[g])])/(2*f^2*n) + (Log[c*(d + e*x^n)^p]*Log[-((e*(Sqrt[g] + Sqrt[-f]*
x^n))/(d*Sqrt[-f] - e*Sqrt[g]))])/(2*f^2*n) + (e^2*g*p*Log[g + f*x^(2*n)])/(4*f^2*(d^2*f + e^2*g)*n) + (p*Poly
Log[2, (Sqrt[-f]*(d + e*x^n))/(d*Sqrt[-f] - e*Sqrt[g])])/(2*f^2*n) + (p*PolyLog[2, (Sqrt[-f]*(d + e*x^n))/(d*S
qrt[-f] + e*Sqrt[g])])/(2*f^2*n)

Rule 2475

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2416

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rule 2413

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(x_)^(m_.)*((f_.) + (g_.)*(x_)^(r_.))^(q_.), x_
Symbol] :> Simp[((f + g*x^r)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^p)/(g*r*(q + 1)), x] - Dist[(b*e*n*p)/(g*r*(q
+ 1)), Int[((f + g*x^r)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^(p - 1))/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e,
 f, g, m, n, q, r}, x] && EqQ[m, r - 1] && NeQ[q, -1] && IGtQ[p, 0]

Rule 706

Int[1/(((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[e^2/(c*d^2 + a*e^2), Int[1/(d + e*x), x],
 x] + Dist[1/(c*d^2 + a*e^2), Int[(c*d - c*e*x)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a
*e^2, 0]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2393

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + (c*e*x)/g])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{-2 n}\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\log \left (c (d+e x)^p\right )}{\left (f+\frac{g}{x^2}\right )^2 x} \, dx,x,x^n\right )}{n}\\ &=\frac{\operatorname{Subst}\left (\int \left (-\frac{g x \log \left (c (d+e x)^p\right )}{f \left (g+f x^2\right )^2}+\frac{x \log \left (c (d+e x)^p\right )}{f \left (g+f x^2\right )}\right ) \, dx,x,x^n\right )}{n}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x \log \left (c (d+e x)^p\right )}{g+f x^2} \, dx,x,x^n\right )}{f n}-\frac{g \operatorname{Subst}\left (\int \frac{x \log \left (c (d+e x)^p\right )}{\left (g+f x^2\right )^2} \, dx,x,x^n\right )}{f n}\\ &=\frac{g \log \left (c \left (d+e x^n\right )^p\right )}{2 f^2 n \left (g+f x^{2 n}\right )}+\frac{\operatorname{Subst}\left (\int \left (-\frac{\sqrt{-f} \log \left (c (d+e x)^p\right )}{2 f \left (\sqrt{g}-\sqrt{-f} x\right )}+\frac{\sqrt{-f} \log \left (c (d+e x)^p\right )}{2 f \left (\sqrt{g}+\sqrt{-f} x\right )}\right ) \, dx,x,x^n\right )}{f n}-\frac{(e g p) \operatorname{Subst}\left (\int \frac{1}{(d+e x) \left (g+f x^2\right )} \, dx,x,x^n\right )}{2 f^2 n}\\ &=\frac{g \log \left (c \left (d+e x^n\right )^p\right )}{2 f^2 n \left (g+f x^{2 n}\right )}-\frac{\operatorname{Subst}\left (\int \frac{\log \left (c (d+e x)^p\right )}{\sqrt{g}-\sqrt{-f} x} \, dx,x,x^n\right )}{2 (-f)^{3/2} n}+\frac{\operatorname{Subst}\left (\int \frac{\log \left (c (d+e x)^p\right )}{\sqrt{g}+\sqrt{-f} x} \, dx,x,x^n\right )}{2 (-f)^{3/2} n}-\frac{(e g p) \operatorname{Subst}\left (\int \frac{d f-e f x}{g+f x^2} \, dx,x,x^n\right )}{2 f^2 \left (d^2 f+e^2 g\right ) n}-\frac{\left (e^3 g p\right ) \operatorname{Subst}\left (\int \frac{1}{d+e x} \, dx,x,x^n\right )}{2 f^2 \left (d^2 f+e^2 g\right ) n}\\ &=-\frac{e^2 g p \log \left (d+e x^n\right )}{2 f^2 \left (d^2 f+e^2 g\right ) n}+\frac{g \log \left (c \left (d+e x^n\right )^p\right )}{2 f^2 n \left (g+f x^{2 n}\right )}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac{e \left (\sqrt{g}-\sqrt{-f} x^n\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{2 f^2 n}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (-\frac{e \left (\sqrt{g}+\sqrt{-f} x^n\right )}{d \sqrt{-f}-e \sqrt{g}}\right )}{2 f^2 n}-\frac{(e p) \operatorname{Subst}\left (\int \frac{\log \left (\frac{e \left (\sqrt{g}-\sqrt{-f} x\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{d+e x} \, dx,x,x^n\right )}{2 f^2 n}-\frac{(e p) \operatorname{Subst}\left (\int \frac{\log \left (\frac{e \left (\sqrt{g}+\sqrt{-f} x\right )}{-d \sqrt{-f}+e \sqrt{g}}\right )}{d+e x} \, dx,x,x^n\right )}{2 f^2 n}-\frac{(d e g p) \operatorname{Subst}\left (\int \frac{1}{g+f x^2} \, dx,x,x^n\right )}{2 f \left (d^2 f+e^2 g\right ) n}+\frac{\left (e^2 g p\right ) \operatorname{Subst}\left (\int \frac{x}{g+f x^2} \, dx,x,x^n\right )}{2 f \left (d^2 f+e^2 g\right ) n}\\ &=-\frac{d e \sqrt{g} p \tan ^{-1}\left (\frac{\sqrt{f} x^n}{\sqrt{g}}\right )}{2 f^{3/2} \left (d^2 f+e^2 g\right ) n}-\frac{e^2 g p \log \left (d+e x^n\right )}{2 f^2 \left (d^2 f+e^2 g\right ) n}+\frac{g \log \left (c \left (d+e x^n\right )^p\right )}{2 f^2 n \left (g+f x^{2 n}\right )}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac{e \left (\sqrt{g}-\sqrt{-f} x^n\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{2 f^2 n}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (-\frac{e \left (\sqrt{g}+\sqrt{-f} x^n\right )}{d \sqrt{-f}-e \sqrt{g}}\right )}{2 f^2 n}+\frac{e^2 g p \log \left (g+f x^{2 n}\right )}{4 f^2 \left (d^2 f+e^2 g\right ) n}-\frac{p \operatorname{Subst}\left (\int \frac{\log \left (1+\frac{\sqrt{-f} x}{-d \sqrt{-f}+e \sqrt{g}}\right )}{x} \, dx,x,d+e x^n\right )}{2 f^2 n}-\frac{p \operatorname{Subst}\left (\int \frac{\log \left (1-\frac{\sqrt{-f} x}{d \sqrt{-f}+e \sqrt{g}}\right )}{x} \, dx,x,d+e x^n\right )}{2 f^2 n}\\ &=-\frac{d e \sqrt{g} p \tan ^{-1}\left (\frac{\sqrt{f} x^n}{\sqrt{g}}\right )}{2 f^{3/2} \left (d^2 f+e^2 g\right ) n}-\frac{e^2 g p \log \left (d+e x^n\right )}{2 f^2 \left (d^2 f+e^2 g\right ) n}+\frac{g \log \left (c \left (d+e x^n\right )^p\right )}{2 f^2 n \left (g+f x^{2 n}\right )}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac{e \left (\sqrt{g}-\sqrt{-f} x^n\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{2 f^2 n}+\frac{\log \left (c \left (d+e x^n\right )^p\right ) \log \left (-\frac{e \left (\sqrt{g}+\sqrt{-f} x^n\right )}{d \sqrt{-f}-e \sqrt{g}}\right )}{2 f^2 n}+\frac{e^2 g p \log \left (g+f x^{2 n}\right )}{4 f^2 \left (d^2 f+e^2 g\right ) n}+\frac{p \text{Li}_2\left (\frac{\sqrt{-f} \left (d+e x^n\right )}{d \sqrt{-f}-e \sqrt{g}}\right )}{2 f^2 n}+\frac{p \text{Li}_2\left (\frac{\sqrt{-f} \left (d+e x^n\right )}{d \sqrt{-f}+e \sqrt{g}}\right )}{2 f^2 n}\\ \end{align*}

Mathematica [F]  time = 1.2449, size = 0, normalized size = 0. \[ \int \frac{\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{-2 n}\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Log[c*(d + e*x^n)^p]/(x*(f + g/x^(2*n))^2),x]

[Out]

Integrate[Log[c*(d + e*x^n)^p]/(x*(f + g/x^(2*n))^2), x]

________________________________________________________________________________________

Maple [C]  time = 1.082, size = 810, normalized size = 2.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(c*(d+e*x^n)^p)/x/(f+g/(x^(2*n)))^2,x)

[Out]

1/2/n*ln((d+e*x^n)^p)/f^2*ln(f*(x^n)^2+g)+1/2/n*ln((d+e*x^n)^p)*g/f^2/(f*(x^n)^2+g)-1/2/n*p/f^2*ln(d+e*x^n)*ln
(f*(x^n)^2+g)+1/2/n*p/f^2*ln(d+e*x^n)*ln((e*(-f*g)^(1/2)-f*(d+e*x^n)+d*f)/(e*(-f*g)^(1/2)+d*f))+1/2/n*p/f^2*ln
(d+e*x^n)*ln((e*(-f*g)^(1/2)+f*(d+e*x^n)-d*f)/(e*(-f*g)^(1/2)-d*f))+1/2/n*p/f^2*dilog((e*(-f*g)^(1/2)-f*(d+e*x
^n)+d*f)/(e*(-f*g)^(1/2)+d*f))+1/2/n*p/f^2*dilog((e*(-f*g)^(1/2)+f*(d+e*x^n)-d*f)/(e*(-f*g)^(1/2)-d*f))-1/2*e^
2*g*p*ln(d+e*x^n)/f^2/(d^2*f+e^2*g)/n+1/4/n*p*e^2*g/f^2/(d^2*f+e^2*g)*ln(f*(x^n)^2+g)-1/2/n*p*e*g/f/(d^2*f+e^2
*g)*d/(f*g)^(1/2)*arctan(f*x^n/(f*g)^(1/2))-1/4*I/n*Pi*csgn(I*c*(d+e*x^n)^p)^3/f^2*ln(f*(x^n)^2+g)-1/4*I/n*Pi*
csgn(I*c*(d+e*x^n)^p)^3*g/f^2/(f*(x^n)^2+g)-1/4*I/n*Pi*csgn(I*(d+e*x^n)^p)*csgn(I*c*(d+e*x^n)^p)*csgn(I*c)*g/f
^2/(f*(x^n)^2+g)-1/4*I/n*Pi*csgn(I*(d+e*x^n)^p)*csgn(I*c*(d+e*x^n)^p)*csgn(I*c)/f^2*ln(f*(x^n)^2+g)+1/4*I/n*Pi
*csgn(I*(d+e*x^n)^p)*csgn(I*c*(d+e*x^n)^p)^2/f^2*ln(f*(x^n)^2+g)+1/4*I/n*Pi*csgn(I*c*(d+e*x^n)^p)^2*csgn(I*c)*
g/f^2/(f*(x^n)^2+g)+1/4*I/n*Pi*csgn(I*(d+e*x^n)^p)*csgn(I*c*(d+e*x^n)^p)^2*g/f^2/(f*(x^n)^2+g)+1/4*I/n*Pi*csgn
(I*c*(d+e*x^n)^p)^2*csgn(I*c)/f^2*ln(f*(x^n)^2+g)+1/2/n*ln(c)/f^2*ln(f*(x^n)^2+g)+1/2/n*ln(c)*g/f^2/(f*(x^n)^2
+g)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{{\left (f + \frac{g}{x^{2 \, n}}\right )}^{2} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(d+e*x^n)^p)/x/(f+g/(x^(2*n)))^2,x, algorithm="maxima")

[Out]

integrate(log((e*x^n + d)^p*c)/((f + g/x^(2*n))^2*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{f^{2} x + \frac{2 \, f g x x^{2 \, n}}{x^{4 \, n}} + \frac{g^{2} x}{x^{4 \, n}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(d+e*x^n)^p)/x/(f+g/(x^(2*n)))^2,x, algorithm="fricas")

[Out]

integral(log((e*x^n + d)^p*c)/(f^2*x + 2*f*g*x*x^(2*n)/x^(4*n) + g^2*x/x^(4*n)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(c*(d+e*x**n)**p)/x/(f+g/(x**(2*n)))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{{\left (f + \frac{g}{x^{2 \, n}}\right )}^{2} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(d+e*x^n)^p)/x/(f+g/(x^(2*n)))^2,x, algorithm="giac")

[Out]

integrate(log((e*x^n + d)^p*c)/((f + g/x^(2*n))^2*x), x)